

AGROCIENCIA

https://www.agronomia.ues.edu.sv/agrociencia

Artículo científico

Evaluación de tres modelos de cocinas ahorradoras de leña: Lorena Mejorada, Tezulutlán y Finlandia, y un prototipo de cocina con dos materiales de combustión en San Luis Talpa, La Paz, El Salvador

Avilés-Vásquez, M.R.

Universidad de El Salvador, Facultad de Ciencias Agronómicas, Departamento de Desarrollo Rural, Tesista.

Morán-Amaya, S.E.

Universidad de El Salvador, Facultad de Ciencias Agronómicas, Departamento de Desarrollo Rural, Tesista.

Rodríguez-Urrutia, E.A.

Universidad de El Salvador, Facultad de Ciencias Agronómicas, Departamento de Desarrollo Rural, Docente director.

Ruano-Iraheta, C.E.

Universidad de El Salvador, Facultad de Ciencias Agronómicas, Departamento de Zootecnia, Docente director.

Martínez-Hernández, E.G.

Universidad de El Salvador, Facultad de Ciencias Agronómicas, Departamento de Química Agrícola, Docente director.

DOI:10.5281/zenodo.10607726

Título en inglés:

Evaluation of three models of wood-saving kitchens of Lorena Mejorada, Tezulutlán and Finland firewood, and a stove prototype with two combustion materials in San Luis Talpa, La Paz, El Salvador

Correspondencia: efrain.rodriguez@ues.edu.sv

Presentado: 17 de febrero de 2022

Aceptado: 19 de abril de 2022

Esta obra está bajo una Licencia Creative Commons Atribución 4.0 Internacional RESUMEN

La investigación se realizó en la Estación Experimental y de Prácticas

de la Facultad de Ciencias Agronómicas de la Universidad de El Salvador, ubicada en el cantón Tecualuya, municipio de San Luis Talpa, departamento de La Paz. El Salvador, a una altura de 50 metros sobre el nivel del mar, una temperatura promedio de 24 °C y 60 % de humedad relativa promedio anual. El objetivo fue determinar la eficiencia en el uso de leña de tres cocinas ahorradoras de leña: Lorena Mejorada, Tezulutlán y Finlandia, comparándolas con la cocina de fogón abierto (testigo), realizando cinco pruebas de cocción de alimentos: agua, café, arroz, frijoles y maíz. La leña que se utilizó fue de madrecacao (Gliricidia sepium) y conacaste blanco (Albizia adinocephala). El diseño estadístico que se utilizó fue Bloques Completos al Azar con arreglo factorial 2x4, 8 tratamientos y 3 repeticiones de cada prueba, teniendo 24 unidades experimentales, se utilizó la prueba estadística de Tukey con un nivel de significancia del 5 %. Las variables evaluadas fueron: tiempo de encendido de la leña, tiempo de ebullición (100 °C), tiempo de cocción, peso de la leña y poder calorífico de las dos leñas. Se utilizó el programa SPSS para procesar los datos. En el Laboratorio de Química Agrícola se determinó el poder calorífico de un kilogramo de leña de madrecacao, que fue de 4,643.91 Kcal/kg y el de conacaste blanco fue 4,444.43 Kcal/ kg, lo que permite utilizar menos cantidad de leña de madrecacao para la preparación de los alimentos. Los meiores resultados en la cocción de los diferentes alimentos y en el uso eficiente de leña se obtuvieron con la cocina Finlandia, la cual se construyó con una inversión de USD 224.00. Como resultado de esta investigación se construyó una cocina prototipo que se le ha llamado cocina ahorradora de leña «Estación UES», la cual tiene que evaluarse su funcionamiento.

Palabras clave: cocina ahorradora de leña, cocina Lorena Mejorada, cocina Tezulutlán, cocina Finlandia, alimentos, poder calorífico, prototipo

ABSTRACT

The research was carried out in the Experimental and Practice Station of the Faculty of Agronomic Sciences of the University of El Salvador, located in the Tecualuya canton, municipality of San Luis Talpa, department of La Paz. El Salvador, at an altitude of 650 meters above sea level, an average temperature of 24 °C and an average annual relative humidity of 60 %. The objective was to determine the efficiency in the use of firewood of three firewood-saving stoves: Lorena Mejorada, Tezulutlán and Finland, comparing them with the open stove kitchen (control), performing five food cooking tests: water, coffee, rice, beans, and corn. The firewood used was from madrecacao (Gliricidia sepium) and from conacaste blanco (Albizia adinocephala). The statistical design that was used was Complete Random Blocks with a 2x4 factorial arrangement, 8 treatments and 3 repetitions of each test, having 24 experimental units, the statistical test of Orthogonal Contrasts was used with a significance level of 5 %. The variables evaluated were: food cooking time, firewood consumption, kitchen costs and evaluation of the calorific value of the two firewood's. The SPSS program was used to process the data. In the Agricultural Chemistry laboratory, the calorific value of a kilogram of firewood from madrecacao was determined, which was 4,643.91 Kcal/ kg and that of conacaste blanco was 4,444.43 Kcal/ kg, which allows to use less quantity of firewood from madrecacao for the food preparation. The best results in cooking different foods and in the efficient use of firewood were obtained with the Finland kitchen, which was built with an investment of USD224.00. As a result of this research, a prototype kitchen was built that has been called the "UES Station" wood-saving stove, which has to be evaluated for its operation.

Keywords: Wood-saving kitchen, Lorena Mejorada kitchen, Tezulutlán kitchen, Finland kitchen, food, calorific value, prototype

INTRODUCCIÓN

En los últimos años varias instituciones en Centroamérica y México han implementado el uso de cocinas ahorradoras de leña, esto se realiza para combatir las problemáticas en torno a la salud de las personas que preparan los alimentos en cocinas de fogón abierto, disminuir el impacto ambiental de la combustión de la madera y aliviar una parte del trabajo diario que se asocia con la recolección de leña; además, está el impacto negativo sobre los recursos forestales, la deforestación, ya que el principal combustible utilizado es leña (Blanco 2013).

Según la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO), en El Salvador el consumo diario de leña por familia en las zonas rurales es de cinco kilogramos y se utiliza principalmente para encender los fogones tradicionales, los cuales tienen la característica de dispersar humo por toda la casa, produciendo irritación en los ojos y enfermedades respiratorias. Las cocinas tradicionales demandan una alta cantidad de leña, lo que ocasiona una tala indiscriminada de árboles y el traslado de un sector a otro por parte de las familias para obtener la leña a un costo de entre USD 15.00 a USD 20.00. En la mayoría de casos la leña es recogida principalmente por las mujeres, las niñas y los niños (FAO 2011).

Con esta investigación se está contribuyendo al cumplimiento de los siguientes Objetivos de Desarrollo Sostenible ODS: ODS 3. Garantizar una vida sana y promover el bienestar en todas las edades; ODS 12. Garantizar modalidades de consumo y producción sostenibles; ODS 13. Adoptar medidas urgentes para combatir el cambio climático y sus efectos; y el ODS 15. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar los bosques de forma sostenible, luchar contra la desertificación, detener e invertir la degradación de las tierras y poner freno a la pérdida de la diversidad biológica (ONU 2015).

Una cocina ahorradora de leña permite reducir el consumo de leña y el tiempo de cocción de los alimentos, disminuye la cantidad de emisiones nocivas (humo) para la salud humana, principalmente en mujeres y niñas, reduce el tiempo que la familia invierte en recolección de leña, aprovechan de forma más adecuada el calor generado por la leña y permite que se utilice entre un 30 % a 60 % menos que con la cocina tradicional o de fogón abierto. Con esta tecnología se disminuye significativamente la deforestación y la degradación de los bosques en el país, se mejora la salud de las poblaciones beneficiarias, su calidad de vida, y en determinadas situaciones, mejorar las condiciones económicas de las poblaciones tanto rurales como urbanas (Añamise 2015).

La leña se considera una fuente de energía primaria, lo que significa que se obtiene directamente de la naturaleza,

específicamente de los recursos forestales. Incluye los troncos y ramas de los árboles, pero excluye los desechos de la actividad maderera (OLADE 2008). En El Salvador existen diferentes modelos de cocinas ahorradoras de leña; sin embargo, se tiene poca información de la eficiencia de la combustión y del ahorro de leña, de ahí, la importancia de realizar este tipo de investigación para contribuir a la mejora de las condiciones de vida de las personas que habitan en la zona rural.

Esta investigación se realizó en la Estación Experimental y de Prácticas de la Facultad de Ciencias Agronómicas de la Universidad de El Salvador y consistió en la evaluación de la eficiencia energética de tres modelos de cocinas ahorradoras de leña: Lorena Mejorada, Tezulutlán y Finlandia contra el testigo (fogón abierto), cada cocina se combinó con dos tipos de leña de las especies de árboles de madrecacao y conacaste blanco, se estableció el uso de cinco pruebas de cocción de alimentos: agua, café, arroz, frijol y maíz, para determinar tiempos de encendido, de ebullición y cocción final de cada alimento.

Se determinó el poder calorífico (PC) de los dos tipos de leña por medio de la Bomba Calorimétrica en el Laboratorio de Química Agrícola de la Facultad de Ciencias Agronómicas, Universidad de El Salvador, los datos que se determinaron de las muestras de las leñas se utilizaron para determinar el gasto de energía (Kcal/kg). Como resultado de la evaluación de las cocinas se construyó un prototipo de cocina ahorradora de leña que se le ha llamado «Estación UES».

MATERIALES Y MÉTODOS

Ubicación y duración

La investigación se realizó en el periodo de agosto de 2019 a febrero de 2021 en la Estación Experimental y de Prácticas de la Facultad de Ciencias Agronómicas de la Universidad de El Salvador, ubicada en el cantón Tecualuya, municipio de San Luis Talpa, departamento de La Paz, El Salvador, con coordenadas geográficas O 13°47'49.71" y 89°09'60.63" N, a 50 metros sobre el nivel del mar, temperatura promedio de 33 °C (Martínez *et al.* 2005).

Metodología de campo

Recolección de leña

Se utilizaron dos tipos de leña: madrecacao (*Gliricidia sepium*) y conacaste blanco o polvo de queso (*Albizia adinocephala*), las cuales son las que más recolectan las familias en la zona de San Luis Talpa. La leña se obtuvo de árboles que ya estaban derribados, con motosierra se hicieron trozos de aproximadamente 30 cm de largo y 5 cm de grosor, los cuales se almacenaron dentro de los

poyetones. Para la cocina Lorena Mejorada los trozos de leña se tuvieron que rajar y convertirlos en astillas, debido a que la cámara de combustión es de menor tamaño en comparación con las cocinas Tezulutlán y Finlandia.

Construcción del poyetón

A cada una de las cocinas evaluadas se le construyó un poyetón, el cual medía 1.50 m de largo, 1 m de ancho y 1 m de alto, en promedio se utilizaron 90 ladrillos de barro tipo «calavera». La base o mesa de concreto de cada poyetón, en donde se ubicó cada cocina, se construyó colocando un plástico en el suelo, encima se puso un molde de madera de 1.50 m de largo, 1 m de ancho y 0.10 m de alto,

Figura 1. Cocina Lorena Mejorada.

Figura 2. Cocina Tezulutlán.

dentro del molde se instaló un tejido de hierro corrugado asegurado con alambre metálico calibre 16, que luego fue cubierto con una mezcla de arena, grava y cemento, y se dejó secar por ocho días.

Dimensiones de las cocinas evaluadas.

Cocina Lorena Mejorada: 0.90 m de largo, 0.75 m de ancho y 0.40 m de alto (Figura 1). Cocina Tezulutlán mide: 1.10 m de largo, 0.72 m de ancho y 0.27 m de alto (Figura 2). Cocina Finlandia mide: 1.50 m de largo, 0.55 m de ancho y 0.27 m de alto (Figura 3).

Figura 3. Cocina Finlandia.

Variables y pruebas

Las variables medidas fueron: tiempo de encendido de la leña, tiempo de ebullición, tiempo de cocción, peso de la leña, poder calorífico de la leña (Kcal/kg). Antes de comenzar con la investigación se hicieron pruebas piloto para conocer el funcionamiento de cada una de las cocinas evaluadas, y poder desarrollar mejoras o corregir detalles con anticipación. Se realizaron 5 pruebas de cocción de alimentos: agua, café, arroz, frijoles y maíz, que son los alimentos que consume la mayoría de la población salvadoreña en el área rural.

Datos que se registraban en cada prueba de cocción de alimentos: fecha, nombre de la prueba, número de repetición de la prueba, nombre de la cocina, nombre de la leña, peso de la leña, hora de encendido de la cocina, hora de colocación de la olla y hora de finalización de la cocción de los alimentos.

Procedimiento para preparación de agua (PPA)

Para cada prueba siempre se aseguró que la cocina estuviera a temperatura ambiente, limpia, libre de cenizas o desperdicios. Se pesaba en una báscula 2 kg de leña de madrecacao o de conacaste blanco según la prueba a realizar. Se encendía la cocina. En una bitácora se anotaban todos los datos. Se media un litro de agua a temperatura ambiente y se transfirió a un recipiente de aluminio.

Después de 10 minutos de encendido el fuego, cuando el calor ya era intenso y constante (en el quemado de la leña), se colocaba el recipiente con agua. La temperatura del agua se tomó cada 10 minutos hasta el punto de ebullición (100 °C), para ello se introducía un termómetro en el agua. La prueba finalizaba con la ebullición del agua. La leña que no se había quemado se dejaba enfriar, luego se pesaba en una báscula para determinar cuanta leña se había gastado en cada prueba.

Procedimiento para preparación de café (PPC)

Se siguieron los pasos 1, 2, 3 y 4 de la prueba de cocción de agua; luego en un recipiente de aluminio se colocaba un litro de agua y se pesaba el café en una báscula digital. Se esperaban 10 minutos para que encendiera la leña y se calentara la cocina, luego se colocaba el recipiente con agua. Cada 10 minutos se tomaba la temperatura con un termómetro hasta llegar al punto de ebullición. Cuando el agua llegaba al punto de ebullición (100 °C) se agregaba el café y se esperaba que hirviera, terminada la cocción se retiraba la olla. En una bitácora se anotaba el tiempo total de cocimiento del café. La leña que no se había quemado se dejaba enfriar, luego se pesaba en una báscula para determinar cuanta leña se había gastado en cada prueba.

Procedimiento para preparación de arroz (PPA)

Para preparar arroz se hicieron siguieron los pasos 1, 2,

3 y 4 de la prueba de cocción de agua; luego se pesaba el arroz y la sal; después el arroz se lavaba. Se pelaba, cortaba y pesaba cada uno se los ingredientes que se utilizaron (chile dulce, cebolla y tomate) y se midió un litro de agua. Se esperaba 10 minutos para que encendiera la leña y se calentara la cocina luego se colocaba la cacerola con aceite para que se calentara. Se colocó una libra de arroz en la cacerola caliente para sofreírlo. Se agregaban los ingredientes: chile dulce, cebolla, tomate y sal. Luego se agregaba un litro de agua a la cacerola. La temperatura se tomó cada 10 minutos, introduciendo un termómetro en el arroz. Se dejó consumir el aqua y al terminar la cocción del arroz se retiró inmediatamente la cacerola. En una bitácora se anotaba el tiempo total de cocimiento del arroz. La leña que no se había quemado se dejaba enfriar, luego se pesaba en una báscula para determinar cuanta leña se había gastado en cada prueba.

Procedimiento para preparación de frijoles (PPF)

Se realizaron los pasos 1, 2, 3 y 4 de la prueba de cocción de agua; luego se pesaban los frijoles y la sal, después los frijoles se lavaban. Se pelaba, cortaba y pesaba cada uno se los ingredientes que se utilizaron (ajo, cebolla y tomate). La olla con 2 libras de frijoles y 4 litros de agua se colocaba en la cocina. La temperatura se medía cada 15 minutos introduciendo un termómetro en la olla hasta llegar al punto de ebullición. Se agregaba un litro de agua a la olla (cuando un tercio del agua inicial se había evaporado), para evitar que se quemaran los frijoles. En ese momento se agregaba a la olla el ajo, cebolla, tomate y sal como ingredientes para darle sabor a la sopa. Cuando los frijoles estaban cocidos y blandos se retiraba la olla. Se anotaba en la bitácora el tiempo total de cocimiento. La leña que no se había quemado se dejaba enfriar, luego se pesaba en una báscula para determinar cuanta leña se había gastado en cada prueba.

Procedimiento para preparación de maíz (PPM)

Se siguieron los pasos 1, 2, 3 y 4 de la prueba de cocción de agua; luego se pesó y lavó el maíz. Se colocaba en la cocina la olla con 2 libras de maíz. Se agregó 6 onzas de cal viva a la olla con el maíz y se removió con una paleta de madera para que se homogenice el agua con la cal, para evitar que se pegue el maíz y comenzar el proceso de pelado del grano. La temperatura se medía cada 15 minutos introduciendo un termómetro en la olla hasta llegar al punto de ebullición. Cuando el maíz estaba cocido y blando se retiraba la olla. Se anotaba en una bitácora el tiempo total de cocimiento. La leña que no se había quemado se dejaba enfriar, luego se pesaba en una báscula para determinar cuanta leña se había gastado en cada prueba.

Metodología de laboratorio

El procedimiento para determinar el poder calorífico de la leña utilizada se realizó en el Laboratorio de Química Agrícola de la Facultad de Ciencias Agronómicas de la Universidad de El Salvador, a través del uso de una bomba calorimétrica

Metodología estadística

Se utilizó un diseño de Bloques al Azar en Arreglo Factorial 2 x 4, el primer factor fue los tipos de leña (materiales de combustión) y el segundo factor los tipos de cocinas evaluadas, fueron 8 tratamientos con 3 repeticiones, el total de unidades experimentales fue 24 (Tabla 1). Se utilizó la prueba estadística de Tukey con un nivel de significancia del 0.05, apoyado del software estadístico SPSS versión 25.

Metodología económica

Para el análisis económico se realizó un presupuesto parcial de los costos de inversión de los materiales para la construcción de las 3 cocinas ahorradoras de leña.

Tabla 1. *Tratamientos evaluados.*

Tratamiento	Tipo de leña	Tipo de cocina
Tratamiento 1 (T1)	Madrecacao	Fogón abierto
Tratamiento 2 (T2)	Madrecacao	Lorena Mejorada
Tratamiento 3 (T3)	Madrecacao	Tezulutlán
Tratamiento 4 (T4)	Madrecacao	Finlandia
Tratamiento 5 (T5)	Conacaste blanco	Fogón abierto
Tratamiento 6 (T6)	Conacaste blanco	Lorena Mejorada
Tratamiento 7 (T7)	Conacaste blanco	Tezulutlán
Tratamiento 8 (T8)	Conacaste blanco	Finlandia

RESULTADOS Y DISCUSIÓN

Poder calorífico de la leña

El gasto de energía (Kcal) resultó de multiplicar el gasto de leña en cada prueba por el dato del poder calorífico de cada leña. Según los resultados del poder calorífico calculados en el Laboratorio, la leña de madrecacao tiene un poder calorífico de 4,643.91 Kcal/kg y la de conacaste blanco de 4,444.43 Kcal/kg.

Prueba de cocción de agua con leña de conacaste

Según los resultados el menor tiempo para alcanzar el punto de ebullición del agua (100 °C) se tuvo con la cocina Finlandia con una media de 25 minutos, y el mayor tiempo con la cocina Lorena Mejorada con 51.67 minutos (Cuadro 2). El menor gasto de leña de conacaste blanco para alcanzar el punto de ebullición del agua se obtuvo con la cocina Tezulutlán con 0.9 kg; el mayor con la cocina Lorena Mejorada con 2 kg. El mayor poder calorífico para lograr el punto de ebullición del agua se obtuvo con la cocina Lorena Mejorada con 8,888.86 Kcal; el menor con la cocina Tezulutlán con 3,999.99 Kcal (Tabla 2).

Tabla 2. Resultados de la prueba de cocción de agua con leña de conacaste blanco.

Cocina	Tiempo de cocción (minutos)	Leña gastada (kg)	Poder calorífico (Kcal)
Finlandia	25	1.1	4,888.87
Tezulutlán	28.33	0.9	3,999.99
Fogón abierto	33.33	1.2	5,333.32
Lorena Mejorada	51.67	2	8,888.86

Según los resultados de la prueba de Tukey con un nivel de confianza del 95 % y p < 0.05 en el tiempo y consumo de leña para alcanzar el punto de ebullición del agua, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cocinas Finlandia, Tezulutlán y de Fogón abierto; pero si con respecto a la cocina Lorena Mejorada.

Los resultados en todas las pruebas, demostraron que la cocina Lorena Mejorada tiene el peor desempeño, ya que lleva mucho tiempo en la cocción de alimentos y consume demasiada leña que eleva los costos para prepararlos.

Prueba de cocción del agua con leña de madrecacao

El menor tiempo para lograr el punto de ebullición del agua fue con la cocina Finlandia con una media de 25 minutos; el mayor fue con la cocina Lorena Mejorada con 48.33 minutos (Tabla 3). El menor gasto de leña de madrecacao para alcanzar el punto de ebullición del agua se tuvo con la cocina Tezulutlán con 1.2 kg, el mayor fue con la cocina Lorena Mejorada con 3.3 kg. El mayor poder calorífico para alcanzar el punto de ebullición del agua se obtuvo con la cocina Lorena Mejorada con 15,324.90 Kcal; el menor fue con la cocina Tezulutlán con 5,572.69 Kcal.

Tabla 3.
Resultados de la prueba de cocción de agua con leña de madrecacao.

Cocina	Tiempo de cocción (minutos)	Leña gastada (kg)	Poder calorífico (Kcal)
Finlandia	25	1.6	7,430.26
Tezulutlán	26.67	1.2	5,572.69
Fogón abierto	33.33	1.8	8,359.04
Lorena Mejorada	48.33	3.3	15,324.90

Según los resultados de la prueba de Tukey con un nivel de confianza del 95 % y p < 0.05 en el tiempo y consumo de leña para alcanzar el punto de ebullición del agua, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cocinas Finlandia, Tezulutlán y de Fogón abierto; pero si con respecto a la cocina Lorena Mejorada.

Prueba de cocción del café con leña de conacaste blanco

El menor tiempo de cocción del café con leña de conacaste blanco se tuvo con las cocinas Finlandia y Tezulutlán con una media de 33.33 minutos; el mayor fue con la cocina Lorena Mejorada con 65 minutos (Tabla 4). El menor gasto de leña de conacaste blanco se dio con la cocina Finlandia con 1.4 kg; el mayor fue con la cocina Lorena Mejorada con 4.2 kg. El mayor poder calorífico se obtuvo con la cocina Lorena Mejorada con 18,666.61 Kcal; el menor fue con la cocina Finlandia con 6,222.20 Kcal.

Tabla 4. Resultados de la prueba de cocción de café con leña de conacaste blanco.

Cocina	Tiempo de cocción (minutos)	Leña gastada (kg)	Poder calorífico (Kcal)
Finlandia	33.33	1.4	6,222.20
Tezulutlán	33.33	1.5	6,666.65
Fogón abierto	43.33	2.1	9,333.30
Lorena Mejorada	65	4.2	18,666.61

Según los resultados de la prueba de Tukey, con un nivel de confianza del 95 % y p < 0.05 en el tiempo y consumo de leña en la prueba de cocción del café, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cocinas Finlandia, Tezulutlán y de Fogón abierto; pero si con respecto a la cocina Lorena Mejorada.

Prueba de cocción de café con leña de madrecacao

El menor tiempo de cocción del café con leña de madrecacao se registró con las cocinas Finlandia y Tezulutlán con una media de 35 minutos; el mayor fue con la cocina Lorena Mejorada con 61.67 minutos (Tabla 5). El menor gasto de leña de madrecacao en la cocción del café se tuvo con la cocina Finlandia con 1.1 kg; el mayor fue con la cocina Lorena Mejorada con 4.6 kg. El mayor poder calorífico en la prueba de cocción del café se obtuvo con la cocina Lorena Mejorada con 21,361.99 Kcal; el menor fue con la cocina Finlandia con 5,108.30 Kcal.

Según los resultados de la prueba de Tukey, con un nivel de confianza del 95 % y p < 0.05 en el tiempo en la prueba de cocción de café, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cocinas Finlandia, Tezulutlán y de fogón abierto; pero si con respecto a la cocina Lorena Mejorada.

Tabla 5. Resultados de la prueba de cocción de café con leña de madrecacao.

Cocina	Tiempo de cocción (minutos)	Leña gastada (kg)	Poder calorífico (Kcal)
Finlandia	35	1.1	5,108.30
Tezulutlán	35	1.7	7,894.65
Fogón abierto	38.33	2.4	11,145.38
Lorena Mejorada	61.67	4.6	21,361.99

Prueba de cocción de arroz con leña de conacaste blanco

El menor tiempo para la cocción del arroz con leña de conacaste blanco se dio con la cocina Finlandia con una media de 31.67 minutos; el mayor fue con la cocina Lorena Mejorada con 73.33 minutos (Tabla 6). El menor gasto de leña de conacaste blanco, en la prueba de cocción del arroz, se registró con la cocina Finlandia con 1.2 kg; el mayor fue con la cocina Lorena Mejorada con 4.2 kg. El mayor poder calorífico en la prueba de cocción del arroz se obtuvo con la cocina Lorena Mejorada con 18,666.61 Kcal; el menor fue con la cocina Finlandia con 5,333.32 Kcal.

Resultados de la prueba de cocción de arroz con leña de Conacaste blanco.

Cocina	Tiempo de cocción (minutos)	Leña gastada (kg)	Poder calorífico (Kcal)
Finlandia	31.67	1.2	5,333.32
Tezulutlán	33.33	1.4	6,222.20
Fogón abierto	41.67	1.6	7,111.09
Lorena Mejorada	73.33	4.2	18,666.61

Según los resultados de la prueba de Tukey con un nivel de confianza del 95 % y p < 0.05 en el tiempo y gasto de leña en la prueba de cocción de arroz, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cocinas Finlandia, Tezulutlán y de fogón abierto; pero si con respecto a la cocina Lorena Mejorada.

Prueba de cocción de arroz con leña de Madrecacao

El menor tiempo para la cocción del arroz con leña de madrecacao fue con la cocina Tezulutlán con una media de 30 minutos; el mayor con la cocina Lorena Mejorada con 50 minutos (Tabla 7). El menor gasto de leña de madrecacao en la prueba de cocción del arroz se tuvo con la cocina Finlandia con 1.3 kg; el mayor fue con la cocina Lorena Mejorada con 4.1 kg. El mayor poder calorífico en la prueba de cocción del arroz se obtuvo con la cocina Lorena Mejorada con 19,040.03 Kcal; el menor fue con la cocina Finlandia con 6,037.08 Kcal.

Según los resultados de la prueba de Tukey con un nivel de confianza del 95 % y p < 0.05 en el tiempo y gasto de leña en la prueba de cocción de arroz, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cocinas Finlandia, Tezulutlán y de fogón abierto; pero si con respecto a la cocina Lorena Mejorada.

 Tabla 7.

 Resultados de la prueba de cocción de arroz con leña de Madrecacao.

Cocina	Tiempo de cocción (min)	Leña gastada (kg)	Poder calorífico (Kcal)
Finlandia	31.67	1.3	6,037.08
Tezulutlán	30	1.5	6,965.87
Fogón abierto	33.33	1.8	8,359.04
Lorena Mejorada	50	4.1	19,040.03

Prueba de cocción de frijol con leña de conacaste blanco

El menor tiempo para la cocción del frijol con leña de conacaste blanco se tuvo con la cocina Finlandia con una media de 98.33 minutos; el mayor con la cocina Lorena Mejorada con 166.67 minutos (Tabla 8). El menor gasto de leña de conacaste blanco en la prueba de cocción del frijol se dio con la cocina Finlandia con 5.7 kg; el mayor con la cocina Lorena Mejorada con 8.8 kg. El mayor poder

calorífico en la prueba de cocción del frijol se obtuvo con la cocina Lorena Mejorada con 39,110.98 Kcal; el menor con la cocina Finlandia con 25,333.32 Kcal.

Según los resultados de la prueba de Tukey con un nivel de confianza del 95 % y p < 0.05 en el tiempo y gasto de leña en la prueba de cocción de frijol, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cocinas Finlandia, Tezulutlán y de fogón abierto; pero si con respecto a la cocina Lorena Mejorada.

Tabla 8.
Resultados de la prueba de cocción de frijol con leña de conacaste blanco.

Cocina	Tiempo de cocción (min)	Leña gastada (kg)	Poder calorífico (Kcal)
Finlandia	98.33	5.7	25,333.32
Tezulutlán	101.67	5.9	26,222.1.4
Fogón abierto	111.67	6.3	27,999.91
Lorena Mejorada	166.67	8.8	39,110.98

Prueba de cocción de frijol con leña de madrecacao

El menor tiempo para la cocción del frijol con leña de madrecacao se dio con la cocina Finlandia con una media de 101.67 minutos; el mayor con la cocina Lorena Mejorada con 168.33 minutos (Cuadro 9). El menor gasto de leña de madrecacao en la cocción del frijol se tuvo con la cocina Finlandia con 5.8 kg; el mayor con la cocina Lorena Mejorada con 9.1 kg. El mayor poder calorífico en la

prueba de cocción del frijol se obtuvo con la cocina Lorena Mejorada con 42,259.58 Kcal; el menor con la cocina Finlandia con 26,934.68 Kcal.

Según los resultados de la prueba de Tukey, con un nivel de confianza del 95 % y p < 0.05 en el tiempo y gasto de leña en la prueba de cocción de frijol, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cocinas Finlandia, Tezulutlán y de fogón abierto; pero si con respecto a la cocina Lorena Mejorada.

Tabla 9. Resultados de la prueba de cocción de frijol con leña de madrecacao.

Cocina	Tiempo de cocción (min)	Leña gastada (kg)	Poder calorífico (Kcal)
Finlandia	101.67	5.8	26,934.68
Tezulutlán	115	5.9	27,399.07
Fogón abierto	105	7.0	32,507.37
Lorena Mejorada	168.33	9.1	42,259.58

Prueba de cocción de maíz con leña de conacaste blanco

El menor tiempo para la cocción de maíz con leña de conacaste blanco se tuvo con la cocina Tezulutlán con una media de 43.33 minutos; el mayor con las cocinas de fogón abierto y Lorena Mejorada con 71.67 minutos (Tabla 10). La cocción del maíz se evaluó desde que se encendió la leña hasta que el grano de maíz se descascaró o nixtamalizó. El menor gasto de leña de conacaste blanco en la prueba de cocción del maíz se dio con la cocina Tezulutlán con 5.1

kg; el mayor con la cocina Lorena Mejorada con 6.6 kg. El mayor poder calorífico en la prueba de cocción de maíz se obtuvo con la cocina Lorena Mejorada con 29,333.24 Kcal; el menor con la cocina Tezulutlán con 22,666.59 Kcal.

Según los resultados de la prueba de Tukey, con un nivel de confianza del 95% y p < 0.05 en el tiempo y gasto de leña en la prueba de cocción de maíz, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cuatro cocinas.

Tabla 10. Resultados de la prueba de cocción de maíz con leña de conacaste blanco.

Cocina	Tiempo de cocción (min)	Leña gastada (kg)	Poder calorífico (Kcal)
Tezulutlán	43.33	5.1	22,666.59
Finlandia	46.67	5.6	24,888.81
Fogón abierto	71.67	5.7	25,333.25
Lorena Mejorada	71.67	6.6	29,333.24

Prueba de cocción de maíz con leña de madrecacao

El menor tiempo para la cocción de maíz con leña de madrecacao se tuvo con la cocina Tezulutlán con una media de 43 minutos; el mayor fue con la cocina Lorena Mejorada con 73 minutos (Tabla 11). El menor gasto de leña de madrecacao en la prueba de cocción del maíz se tuvo con la cocina Tezulutlán con 4.6 kg; el mayor fue con la cocina Lorena Mejorada con 8.3 kg. El mayor poder

calorífico en la prueba de cocción de maíz se obtuvo con la cocina Lorena Mejorada con 38,544.45 Kcal; el menor fue con la cocina Tezulutlán con 21,361.99 Kcal.

Según los resultados de la prueba de Tukey, con un nivel de confianza del 95% y p < 0.05 en el tiempo y gasto de leña en la prueba de cocción de maíz, no se encontraron diferencias estadísticas significativas en los resultados obtenidos entre las cocinas Finlandia, Tezulutlán y de fogón abierto; pero si con respecto a la cocina Lorena Mejorada.

Tabla 11. Resultados de la prueba de cocción de maíz con leña de madrecacao.

Cocina	Tiempo de cocción (min)	Leña gastada (kg)	Poder calorífico (Kcal)
Tezulutlán	43	4.6	21,361.99
Finlandia	45	5.0	23,219.55
Fogón abierto	65	5.9	27,399.07
Lorena Mejorada	73	8.3	38,544.45

Costos de inversión en las cocinas ahorradoras de leña

La cocina ahorradora de leña que tiene el mayor costo de inversión es la cocina Tezulutlán con USD 325.11; seguida por la cocina Lorena Mejorada con USD 237.66; y la cocina que tiene el menor costo de inversión es la cocina Finlandia con USD 224.66.

Ventajas y desventajas de las cocinas ahorradoras utilizadas en la investigación

Cocina Lorena Mejorada

Ventajas:

- 1. Produce mucha ceniza que se puede utilizar como fertilizante orgánico para las plantas.
- 2. Tiene una chimenea para extraer el humo y sacarlo por encima de los techos de las viviendas, y evitar la contaminación del aire dentro de los hogares.
- Las personas no se exponen a quemaduras por acercarse a las paredes de la cocina, debido al grosor de las mismas.
- La temperatura caliente se mantiene en la cámara de combustión de la cocina, por lo que se facilita el encendido de una próxima cocinada.

Desventaias:

- La entrada de la cocina y la cámara de combustión son demasiado reducidas.
- 2. Solo enciende cuando se utiliza leña de tamaño pequeña como astillas, olote, ocote, gas, papel, otros.
- Debido a que la cámara de combustión es muy pequeña, produce mucho humo cuando empieza la combustión; se debe soplar o generar viento con una tabla o cartón para agregar oxígeno.
- 4. El tamaño del comal es muy pequeño para la preparación de tortillas.

Cocina Tezulutlán

Ventajas:

- 1. La cámara de combustión es más espaciosa lo que permite usar leña gruesa.
- Las personas no se exponen a quemaduras por acercarse a las paredes de la cocina, debido al grosor de las mismas y porque se pierde menos calor al ambiente.

- 3. Tiene una chimenea para extraer el humo y sacarlo por encima de los techos de las viviendas, y evitar la contaminación del aire dentro de los hogares.
- Tiene tres hornillas de diferente tamaño (grande, mediana y pequeña) para recipientes de diferentes tamaños.

Desventajas:

- El valor de la parrilla de hierro incrementa los costos de inversión.
- Se debe utilizar equipo de soldadura porque la parrilla de hierro debe ir soldada a la cocina y al poyetón para evitar que se levante por las altas temperaturas generadas dentro de la cámara de combustión.
- Si no se tiene cuidado hay una alta posibilidad de quemadura por la parrilla de hierro durante la cocción de los alimentos.
- 4. No tiene comal para hacer tortillas.

Cocina Finlandia

Ventajas:

- Tiene una chimenea para extraer el humo y sacarlo por encima de los techos de las viviendas, y evitar la contaminación del aire dentro de los hogares.
- Las personas no se exponen a quemaduras por acercarse a las paredes de la cocina, debido al grosor de las mismas.
- 3. Debido al fuego intenso que se genera la temperatura aumenta rápidamente.

Desventajas:

- Se raja y se desquebraja sino se prepara bien la mezcla de barro-cemento.
- 2. La entrada de la cámara de combustión es estrecha.
- La cámara de combustión es muy profunda lo que dificulta limpiarla.
- 4. No se pueden hacer tortillas a pesar que tiene un comal, ya que no se puede colocar leña gruesa que es la que mantiene un fuego intenso y constante, por lo que la masa de maíz se pega al comal.

Cocina de fogón abierto

Ventajas:

- 1. Son económicas y no requiere mayor inversión.
- 2. Se puede mover de lugar.
- Se usan diferentes tipos de combustibles y leña de diferente grosor y tamaño.
- 4. Se adapta a las formas de los recipientes.

Desventajas:

- Baja eficiencia en la preparación de alimentos como frijoles y maíz.
- La mayor cantidad del calor generado se pierde por los costados.
- Genera mucho humo que afecta la salud de las personas (enfermedades respiratorias, de los ojos, quemaduras, artritis, otras), principalmente en mujeres, niñas y niños.
- Elevado consumo de leña.

Cocina Prototipo

Como producto de la evaluación de las tres cocinas ahorradoras de leña, los tipos de leña, el calor generado y las pruebas de cocimiento de alimentos, se construyó una cocina prototipo ahorradora de leña en la Estación Experimental y de Prácticas de la Facultad de Ciencias Agronómicas de la Universidad de El Salvador, a la que se le denominó cocina ahorradora de leña "Estación UES". Esta cocina se construyó tomando como base las necesidades que se tienen en la Planta de Procesamiento de Alimentos de la Estación Experimental y de Prácticas de la Facultad de Ciencias Agronómicas, Universidad de El Salvador.

Para construir la cocina prototipo se tomó en cuenta lo siguiente: de la cocina Finlandia se aprovechó los materiales utilizados para la construcción y el diseño de las hornillas, en el prototipo se construyó una sección donde está el comal para mejor manejo y aprovechamiento de la leña en la preparación de las tortillas; de la cocina Tezulutlán se tomó de base el tamaño de la cámara de combustión y de las hornillas; de la cocina Lorena Mejorada se aprovechó el diseño de la entrada de la cámara de combustión y la colocación de ladrillos en medio de la cámara para distribuir de mejor manera el calor; y de la cocina de fogón abierto se tomó la forma de oxigenar la cámara de combustión para que siempre haya fuego y calor.

Los materiales utilizados: ladrillo de barro tipo "calavera", arena, cemento, zacate seco picado, melaza, sal, barro,

varillas de hierro de 3/8 de pulgada y un poyetón. Las dimensiones del poyetón donde está la cocina son 0.70 m de alto, 2.42 m de largo y 1.50 m de ancho; la cocina tiene las siguientes medidas 0.24 m de alto, 2.42 m de largo y 1.13 m de ancho.

La cocina se dividió en tres secciones: la 1ª sección (de izquierda a derecha) mide 0.74 m de ancho por 1 m de largo, en ella se instaló una parrilla de hierro sobre la que se puede cocinar carne asada y también servirá para colocar un comal de 0.65 m de diámetro para hacer tortillas; la 2ª sección mide 0.65 m de ancho por 1 m de largo, se ubica al centro de la cocina y se construyó una hornilla para cocinar alimentos en mayores cantidades, por ejemplo sopa de frijoles, cocer maíz, entre otros; la 3ª sección mide 1 m de ancho por 1.03 m de largo, está ubicada al lado derecho, se construyeron dos hornillas para cocinar alimentos en menores cantidades, por ejemplo arroz, huevo, café, entre otros. La cocina prototipo se va a seguir evaluando hasta encontrar que sea un modelo eficiente en el consumo de leña y tiempo de cocción de los alimentos, en comparación con las cocinas ahorradoras de leña evaluadas. La inversión para construir esta cocina fue de USD 259.76.

CONCLUSIONES

Con la cocina Finlandia se obtuvieron los mejores resultados en las cinco pruebas de cocción de alimentos y en el uso eficiente de la leña, ya que esta enciende con alta intensidad, pero tiene la dificultad de manipulación de la leña por lo estrecho y profundo de la cámara de combustión, el comal no calienta bien por lo que las tortillas se pegan y no se cocinan bien.

Con la cocina Lorena Mejorada se obtuvo el mayor consumo de leña y el mayor tiempo de cocción de los alimentos, debido a que el fuego que llega a las hornillas no es intenso por que los conductos no tienen el espacio necesario para que circule el calor, además, por el poco espacio que posee la cámara de combustión, dificulta el encendido y es necesario reducir el tamaño de los trozos de leña para que encienda más rápido.

El tamaño de la cámara de combustión de la cocina Tezulutlán permitió que toda la leña se consumiera en forma homogénea con fuego intenso, pero es la de mayor costo de inversión por el uso de la lámina de hierro que se debe soldar en el poyetón.

La cocina tradicional o de fogón abierto tiene una combustión incompleta de la leña, perdida de energía calorífica por procesos de transferencia de calor y expulsa demasiado humo que contamina el ambiente.

El poder calorífico de un kilogramo de leña de madrecacao es de 4,643.91 Kcal/kg y de conacaste blanco de 4,444.43 Kcal/kg, por lo que se puede utilizar menos cantidad de

leña de madrecacao para la preparación de los alimentos.

La inversión más baja en materiales y mano de obra fue en la construcción de la cocina Finlandia con USD 224.00, seguida por la cocina Lorena Mejorada con USD 237.66, la cocina prototipo con USD 259.76 y la cocina Tezulutlán con USD 325.11.

AGRADECIMIENTOS

Al Banco de Desarrollo de El Salvador (BANDESAL) por su apoyo económico.

BIBLIOGRAFÍA

- Añamise Ayala, LE. (2015). Medición de Índices de Adopción de estufas mejoradas en las comunidades de El Chagüite y Cuesta Grande, Honduras (en línea). Honduras. Zamorano. Consultado 02 de sep. 2018. Disponible en: https://bdigital.zamorano.edu/bitstream/11036/4481/1/IAD-2015-002.pdf
- Blanco Rodríguez, JM. (2013). *Estufas mejoradas de leña en Centroamérica: Detonando los mercados*. San José, Costa Rica. 1 ed. 40 p.
- FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación, El Salvador) (2011). Uso y Construcción de la Estufa Ahorradora Tezulután-modificada. El Salvador. Morazán. 7 p.
- Martínez Argueta, AA; Zelada Guevara, CA; Herrera Martínez, ME. (2005). *Creación de un modelo de Sistemas de Información Geográficos (SIG) para una finca, caso Campo Experimental y de Prácticas de la Facultad de Ciencias Agronómicas*. Tesis Ing. Agr. El Salvador. Universidad de El Salvador. 98 p.
- OLADE (Organización Latinoamericana de Energía, Centro América) (2008). Proyecto apoyo a la matriz de acciones para la integración y desarrollo energético de Centroamérica. Asistencia Técnica sobre lecciones aprendidas y recomendaciones para el desarrollo de proyectos de estufas eficientes en Guatemala, El Salvador, Honduras, Nicaragua y Panamá. Informe RD Jiménez. Centro América. OLADE. 120 p.
- ONU (Organización de las Naciones Unidas, Estados Unidos) (2015). *Lista Oficial Objetivo del Desarrollo del Milenio* (en línea). Consultado 25 febrero 2019. Disponible en: http://mdgs.un.org/unsd/mdg/Home